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S1. Network architecture 

 

Figure S1. Neural network architecture of the agent. Number of channels and vector sizes are indicated 

as tuples. 
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S2. Training dataset configuration 

In the pre-training stage of PIRL, we use a dataset consisting of 20,000 structure-adjoint gradient 

pairs. The number of training dataset is selected based on the tradeoff between the prediction 

accuracy and the sample efficiency. We run five trials of supervised learning with each training 

data set consisting of 2,500, 5,000, 10,000, 20,000 and 40,000 samples. The calculated root-mean-

square error (RMSE) is normalized with the standard deviation of the adjoint gradients in the 

training set. Figure S2a shows how the prediction error of the neural network changes as a function 

of the number of training samples available to the network.  

The periodic nature of the system enables data augmentation through transversely displaced 

samples. The data-augmented training dataset has a size of 640,000. Also, as the samples with 

exceptionally high adjoint gradients obstruct the supervised learning process, they were excluded 

from the training dataset.  

 

Figure S2. a, The prediction error of the neural network for different training set sizes under a target 

condition λ = 1100 nm, θ = 60°. Normalized error is calculated by dividing the test set root-mean-square-

error (RMSE) by the standard deviation of the training set, ~0.0625. b, Filling ratio of the Si cells during 

the random flipping. Practical solution is estimated based on the Monte Carlo simulation and the 

theoretical solution is obtained through solving the differential equation 𝑦′ = [−𝑦 + (1 − 𝑦)] 256⁄ , with 

initial condition y(0) = 1, where y represents a filling ratio of silicon cells during the random flipping of 

cells. 

 

Randomly flipped samples are used to create the dataset for the pretraining stage. We plot the ratio 

of cells filled with silicon among the 256 cells assuming a full exploration (a fully-random flip). 

Each episode starts off with a silicon-filled device represented as [1, 1, …, 1]. Figure S2b shows 
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the filling ratio of silicon as a function of the number of random flips. As the number of random 

flips increases, the filling ratio of the silicon converges to 50%. The silicon filling ratio of samples 

in the training dataset was set to follow the distribution given in Figure S2b as RL initially starts 

off from exploration dominated processes through Epsilon scheduling. 
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S3. Comparison between the flip-value and the adjoint gradient 

 

Figure S3. The conceptual explanation of the adjoint gradient and the flip-difference calculation. The 

deflection efficiency is plotted as a black line in the figure. The adjoint gradient is a local approximation 

(red) of the average rate of change in the flip-difference calculation (blue). 
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S4. Algorithm summary 

Table S1. Pre-training stage 
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Table S2. RL stage 

 

 

Table S3. Genetic algorithm 

Variable name Value 

MaxGeneration 400 

PopulationSize 500 

 

We used the genetic algorithm module provided in the Global Optimization Toolbox in MATLAB. 

Table S3 outlines the value of the hyperparameters used. Other hyperparameters are unchanged 

from their default values. Outline of each variable can be found in the following link: [1] 
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Table S4. Greedy algorithm 

 

Table S5. Random search 

 

We set the tolerance parameter = 5.  
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S5. Hyperparameter table of reinforcement learning 

All hyperparameters used in the RL stage are provided in Table S6. Description of each 

hyperparameter can be found on the RLlib website [2]. 

Table S6. List of hyperparameters in RL 

Variable name Value 

overall learning steps 2✕105 

learning_starts 1,000 

target_network_update_freq 2,000 

buffer capacity 105 

learning rate 0.001 

gamma 0.99 

training batch size 512 

number of training 1 

horizon 512 

number of rollout workers 16 

number of environments per workers 1 

initial epsilon 0.99 

final epsilon 0.01 

epsilon timesteps 100,000 
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S6. How RL avoids the local minima problem 

Many optimization methods including the adjoint gradient method suffer from the problem of 

falling into local minima. PIRL mitigates this issue by training a deep network during the RL stage. 

In theory, applying the Bellman operator over an infinite number of times leads to an optimal Q 

function for any arbitrary initialization [3]. Since evaluating optimal Q value requires sweeping 

over the entire state space, which is infeasible, a neural network is adopted to approximate the 

optimal Q function. This approximation is refined through stochastic gradient descent (SGD). 

Previous theoretical investigations indicate that when a neural network is sufficiently 

parameterized, SGD converges to the global minimum [3]. Additionally, in our algorithm, a high 

rate of ε-greedy exploration is set at the beginning of training, to refrain the agent from being 

trapped in a local optima. 
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S7. Ablation study for the physics-informed pre-training and the neural 

network architecture of the RL agent 
 

 
Figure S4. Optimization curve showing the maximum values of deflection efficiency, obtained using 

U-Net based PIRL (blue), U-Net based uninformed RL (red), fully connected network (FCN) based 

uninformed RL (green), FCN based PIRL (yellow) under the target condition λ = 1100 nm, θ = 60°.    

 

Table S7. The maximum, average, and standard deviation of final devices from RL-based algorithms 

under the target condition λ = 1100 nm, θ = 60°.  

 Max Mean  Stdev 

PIRL, UNet 94.9 89.4  4.6 

PIRL, FCN 87.0 80.7  3.2 

Uninformed, Unet 87.1 84.0  2.3 

Uninformed, FCN 88.8 82.8  3.1 
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S8. Average time consumption of each optimization algorithm 

Table S8. Average time consumption of each optimization algorithm. 

Step  Total # of devices Total cost (hours) 

PIRL, UNet 

Pre-training stage 20,000 0.8 h 

RL stage 180,224 1.2 h 

PIRL, FCN 

Pre-training stage 20,000 0.05 h 

RL stage 180,224 0.8 h 

Uninformed RL, UNet RL stage 200,704 1.2 h 

Uninformed RL, FCN RL stage 200,704 0.7 h 
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S9. E-field distribution of an optimized device at a different target condition 

 

Figure S5. Electric field distribution from an optimized beam deflector at (1100 nm, 60°) operating 

at a different target condition (1100 nm, 70°). a, Device with the same state representation in Figure 4a. 

b, The structure shows deflection efficiency of 52.3% at (1100 nm, 70°) whereas the deflection efficiency 

at the original condition is 94.9%. 
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S10. Transfer learning results: Mean and standard deviation 

 

Figure S6. The average deflection efficiency of the device found using PIRL (gray), uninformed RL 

(orange), and two different transfer learning processes: pre-trained model transfer RL (blue), and 

fully-trained model transfer RL (green). The data points and error bars represent the averages and 

standard deviations of maximum efficiencies from ten runs, respectively. 
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