

1

Supplementary Materials for

Sample-efficient inverse design of freeform nanophotonic devices with physics-

informed reinforcement learning

Chaejin Park1,2†, Sanmun Kim1†, Anthony W. Jung2,†, Juho Park1, Dongjin Seo1,3, Yongha Kim2,

Chanhyung Park1, Chan Y. Park2*, Min Seok Jang1*

1School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon

34141, Republic of Korea

2KC Machine Learning Lab, Seoul 06181, Republic of Korea

3AI Team, Glorang Inc., Seoul 06140, Republic of Korea

Correspondence to:

* chan.y.park@kc-ml2.com

* jang.minseok@kaist.ac.kr

†These authors contributed equally to this work.

This PDF file includes:

Supplementary Text

Figs. S1 to S6

Tables. S1 to S8

2

S1. Network architecture

Figure S1. Neural network architecture of the agent. Number of channels and vector sizes are indicated

as tuples.

3

S2. Training dataset configuration

In the pre-training stage of PIRL, we use a dataset consisting of 20,000 structure-adjoint gradient

pairs. The number of training dataset is selected based on the tradeoff between the prediction

accuracy and the sample efficiency. We run five trials of supervised learning with each training

data set consisting of 2,500, 5,000, 10,000, 20,000 and 40,000 samples. The calculated root-mean-

square error (RMSE) is normalized with the standard deviation of the adjoint gradients in the

training set. Figure S2a shows how the prediction error of the neural network changes as a function

of the number of training samples available to the network.

The periodic nature of the system enables data augmentation through transversely displaced

samples. The data-augmented training dataset has a size of 640,000. Also, as the samples with

exceptionally high adjoint gradients obstruct the supervised learning process, they were excluded

from the training dataset.

Figure S2. a, The prediction error of the neural network for different training set sizes under a target

condition λ = 1100 nm, θ = 60°. Normalized error is calculated by dividing the test set root-mean-square-

error (RMSE) by the standard deviation of the training set, ~0.0625. b, Filling ratio of the Si cells during

the random flipping. Practical solution is estimated based on the Monte Carlo simulation and the

theoretical solution is obtained through solving the differential equation 𝑦′ = [−𝑦 + (1 − 𝑦)] 256⁄ , with

initial condition y(0) = 1, where y represents a filling ratio of silicon cells during the random flipping of

cells.

Randomly flipped samples are used to create the dataset for the pretraining stage. We plot the ratio

of cells filled with silicon among the 256 cells assuming a full exploration (a fully-random flip).

Each episode starts off with a silicon-filled device represented as [1, 1, …, 1]. Figure S2b shows

4

the filling ratio of silicon as a function of the number of random flips. As the number of random

flips increases, the filling ratio of the silicon converges to 50%. The silicon filling ratio of samples

in the training dataset was set to follow the distribution given in Figure S2b as RL initially starts

off from exploration dominated processes through Epsilon scheduling.

5

S3. Comparison between the flip-value and the adjoint gradient

Figure S3. The conceptual explanation of the adjoint gradient and the flip-difference calculation. The

deflection efficiency is plotted as a black line in the figure. The adjoint gradient is a local approximation

(red) of the average rate of change in the flip-difference calculation (blue).

6

S4. Algorithm summary

Table S1. Pre-training stage

7

Table S2. RL stage

Table S3. Genetic algorithm

Variable name Value

MaxGeneration 400

PopulationSize 500

We used the genetic algorithm module provided in the Global Optimization Toolbox in MATLAB.

Table S3 outlines the value of the hyperparameters used. Other hyperparameters are unchanged

from their default values. Outline of each variable can be found in the following link: [1]

8

Table S4. Greedy algorithm

Table S5. Random search

We set the tolerance parameter = 5.

9

S5. Hyperparameter table of reinforcement learning

All hyperparameters used in the RL stage are provided in Table S6. Description of each

hyperparameter can be found on the RLlib website [2].

Table S6. List of hyperparameters in RL

Variable name Value

overall learning steps 2✕105

learning_starts 1,000

target_network_update_freq 2,000

buffer capacity 105

learning rate 0.001

gamma 0.99

training batch size 512

number of training 1

horizon 512

number of rollout workers 16

number of environments per workers 1

initial epsilon 0.99

final epsilon 0.01

epsilon timesteps 100,000

10

S6. How RL avoids the local minima problem

Many optimization methods including the adjoint gradient method suffer from the problem of

falling into local minima. PIRL mitigates this issue by training a deep network during the RL stage.

In theory, applying the Bellman operator over an infinite number of times leads to an optimal Q

function for any arbitrary initialization [3]. Since evaluating optimal Q value requires sweeping

over the entire state space, which is infeasible, a neural network is adopted to approximate the

optimal Q function. This approximation is refined through stochastic gradient descent (SGD).

Previous theoretical investigations indicate that when a neural network is sufficiently

parameterized, SGD converges to the global minimum [3]. Additionally, in our algorithm, a high

rate of ε-greedy exploration is set at the beginning of training, to refrain the agent from being

trapped in a local optima.

11

S7. Ablation study for the physics-informed pre-training and the neural

network architecture of the RL agent

Figure S4. Optimization curve showing the maximum values of deflection efficiency, obtained using

U-Net based PIRL (blue), U-Net based uninformed RL (red), fully connected network (FCN) based

uninformed RL (green), FCN based PIRL (yellow) under the target condition λ = 1100 nm, θ = 60°.

Table S7. The maximum, average, and standard deviation of final devices from RL-based algorithms

under the target condition λ = 1100 nm, θ = 60°.

 Max Mean  Stdev

PIRL, UNet 94.9 89.4  4.6

PIRL, FCN 87.0 80.7  3.2

Uninformed, Unet 87.1 84.0  2.3

Uninformed, FCN 88.8 82.8  3.1

12

S8. Average time consumption of each optimization algorithm

Table S8. Average time consumption of each optimization algorithm.

Step Total # of devices Total cost (hours)

PIRL, UNet

Pre-training stage 20,000 0.8 h

RL stage 180,224 1.2 h

PIRL, FCN

Pre-training stage 20,000 0.05 h

RL stage 180,224 0.8 h

Uninformed RL, UNet RL stage 200,704 1.2 h

Uninformed RL, FCN RL stage 200,704 0.7 h

13

S9. E-field distribution of an optimized device at a different target condition

Figure S5. Electric field distribution from an optimized beam deflector at (1100 nm, 60°) operating

at a different target condition (1100 nm, 70°). a, Device with the same state representation in Figure 4a.

b, The structure shows deflection efficiency of 52.3% at (1100 nm, 70°) whereas the deflection efficiency

at the original condition is 94.9%.

14

S10. Transfer learning results: Mean and standard deviation

Figure S6. The average deflection efficiency of the device found using PIRL (gray), uninformed RL

(orange), and two different transfer learning processes: pre-trained model transfer RL (blue), and

fully-trained model transfer RL (green). The data points and error bars represent the averages and

standard deviations of maximum efficiencies from ten runs, respectively.

15

References

1. https://nl.mathworks.com/help/gads/options-in-genetic-algorithm.html.

2. https://docs.ray.io.

3. J. Fan et al. "A theoretical analysis of deep Q-learning." Learning for dynamics and

control. PMLR (2020).

https://nl.mathworks.com/help/gads/options-in-genetic-algorithm.html
https://docs.ray.io/

