Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201707001

Mixed Valence Perovskite Cs₂Au₂I₆: A Potential Material for Thin-Film Pb-Free Photovoltaic Cells with Ultrahigh Efficiency

Lamjed Debbichi, Songju Lee, Hyunyoung Cho, Andrew M. Rappe, Ki-Ha Hong, Min Seok Jang,* and Hyungjun Kim* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

Mixed valence perovskite Cs₂Au₂I₆: a potential material for thin-film Pb-free photovoltaic cells with ultra high-efficiency

Lamjed Debbichi,^{[a],†} Songju Lee,^{[b],†} Hyunyoung Cho,^[b] Andrew M. Rappe,^[c] Ki-Ha Hong,^[d] Min Seok Jang,^{[b],*} and Hyungjun Kim,^{[a],[e]*}

^[a] Dr. L. Debbichi, Prof. H. Kim
Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST),
291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Korea
E-mail: linus16@kaist.ac.kr

^[b] S. Lee, H. Cho, Prof. M. S. Jang School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Korea E-mail: jang.minseok@kaist.ac.kr

^[c] Prof. A. M. Rappe Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

^[d] Prof. K.-H. Hong Department of Materials Science and Engineering, Hanbat National University, 125 Dongseo-Daero, Yuseong-Gu, Daejeon 34158, Korea

^[e] Prof. H. Kim
 Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST),
 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Korea
 E-mail: linus16@kaist.ac.kr

[†]L.D. and S.L are equally contributed to this work

Figure S1. (a) Total and atomic partial density of states (DOS) of the $Cs_2Au_2I_6$ structure. The Fermi level is set at zero energy. (b) Partial DOS of the intermediate band (IB) is magnified. IB mostly consists of d_{x2-y2} orbital of Au^{III} and $p_{x/y}$ orbital of I, implying the dominant contribution from the trivalent Au^{III}-I₄ unit.

Figure S2. Real-space visualization of the intermediate band (IB) of the $Cs_2Au_2I_6$ structure. Charge density isosurface is shown with the isovalue of 0.0012 e/Bohr³.

Figure S3. Dependence of photoconversion efficiency (PCE) on the thickness of Spiro-OMeTAD and the active layer of solar cell device based on (a) poly- $Cs_2Au_2I_6$ and (b) MAPbI₃. (c) Schematic of full solar cell device structure (Glass / ITO(150nm) / TiO₂(40nm) / Active layer(10~350nm) / Spiro-OMeTAD(10~200nm) / Au). (d) PCE of optimized structure with varying active layer thickness.

Figure S4. Real (a) and imaginary (b) part of electric permittivity of single (red curve for $E \perp c$ and blue curve for E / c) and poly (black curve) crystalline Cs₂Au₂I₆ as functions of photon energy. PBE calculated ε'' is shifted by 0.42 eV (reproducing HSE bandgap of 1.21 eV), which is utilized to obtain ε' by using Kramers-Kronig transform.

Figure S5. ε' and ε'' values shown in Figure S4 are used to obtain (a) absorption spectrum of MAPbI₃, poly-Cs₂Au₂I₆, and single-Cs₂Au₂I₆ which are indicated by black, blue and red line respectively, and (b) estimated short circuit current density (J_{sc}), assuming single-path absorption.

TABLE I. DFT optimized lattice constants (a, c), cell volume (V), and inter-atomic distances of the Cs₂Au₂I₆, calculated using PBE. For the comparison, the corresponding experimental values are also listed. All distances are in Å and volumes are in Å³.

	This work	Exp. ^a
а	8.39	8.284
С	12.34	12.092
V	869.04	829.8
Au ^{III} -I	2.703	2.646
Au ¹ -I	2.625	2.586

^aN. Matsushita, H. Kitagawa, N. Kojima, Acta Crystallogra. Sect. C 1997, 53, 663.